High-Quality Draft Genome Sequence of *Xanthomonas arboricola* pv. *juglandis* CPBF 1521, Isolated from Leaves of a Symptomatic Walnut Tree in Portugal without a Past of Phytosanitary Treatment

Camila Fernandes,a,b,c Jochen Blom,d Joël F. Pothier,e Fernando Tavaresa,c

aCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Microbial Diversity and Evolution Group, Universidade do Porto, Vairão, Portugal
bUnidade Estratégica de Investigação e Serviços de Sistemas Agrários e Florestais e Sanidade Vegetal, Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
cFaculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
dBioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
eEnvironmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland

ABSTRACT Here, we report the draft genome sequence of *Xanthomonas arboricola* pv. *juglandis* CPBF 1521, isolated from symptomatic leaves of an ornamental walnut in a public site in Portugal without any record of phytosanitary treatment. This isolate may constitute a genomic reference of a wild-type strain in comparative genomics studies.

Xanthomonas arboricola pv. *juglandis* (Gammaproteobacteria class, Xanthomonadales order, Xanthomonadaceae family) is a threatening and important pathogen of the principal commercial nut trees Persian walnut and English walnut (*Juglans regia* L.) (1, 2). Diseases caused by *X. arboricola* pv. *juglandis* have been demonstrated by the development of several symptoms, namely the presence of necrotic lesions on leaves and fruits, the presence of external apical necrosis near the blossom end evolving into fruit necrosis, and the presence of vertical cankers, brown to black exudates, and distortions on trunks (3–5). Not surprisingly, *X. arboricola* pv. *juglandis* is responsible for increasing losses in walnut production resulting in a negative economic impact for walnut crop regions in many countries worldwide (1, 2, 6).

The present announcement reports the whole-genome sequence of a *X. arboricola* pv. *juglandis* strain, CPBF 1521, isolated in October 2014 from the leaves of an ornamental *J. regia* specimen in a public site in Loures, Portugal, showing typical symptoms of walnut bacterial blight, and for which no phytosanitary treatments were applied. This set of features suggests that this strain has not been exposed to selective pressures caused by phytosanitary treatments, such as copper-based compound sprays, making this genomic data set particularly interesting for comparative genomics studies.

X. arboricola pv. *juglandis* CPBF 1521 was obtained from infected leaf samples as previously described (7) and was grown on M2 medium (yeast extract, 2 g liter−1; Bacto peptone, 5 g liter−1; NaCl, 5 g liter−1; KH2PO4, 0.45 g liter−1; and Na2HPO4·12H2O, 2.39 g liter−1) at 28°C for 48 h with shaking (100 rpm). The EZNA bacterial DNA purification kit (Omega Bio-Tek, Norcross, GA) was used for DNA extraction. Standard genomic library preparation and sequencing was carried out with at the GATC Biotech AG (Konstanz, Germany) using an Illumina HiSeq platform with 2 × 150-bp paired-end reads. Raw sequence data with approximately 10,113,730 reads were assembled

Received 10 August 2018 Accepted 2 October 2018 Published 25 October 2018

This discovery of genes using a European Nucleotide Archive (ENA) under the BioProject accession number PRJEB27248 (1521). An identity value (98%) was obtained between these two strains. The genome conducted that was used as a reference genome. Moreover, a high average nucleotide identity value (98%) was obtained between these two strains. This newly sequenced genome expands the existing genomic data for X. arboricola pv. juglandis (8, 14–16). Further genomic comparison studies are being conducted to identify unique genomic features of X. arboricola pv. juglandis CPBF 1521.

Data availability. This whole-genome shotgun project has been deposited in the European Nucleotide Archive (ENA) under the BioProject accession number PRJEB27248 and in GenBank under the accession number UHHD00000000. The version described in this paper is the first version, UHHD01000000.

ACKNOWLEDGMENTS

This work was cofinanced by the European Structural and Investment Funds (ESIFs) through the Operational Competitiveness and Internationalization Program, COMPETE 2020, and by national funds through Fundação para a Ciência e a Tecnologia (FCT), within the framework of the project EVOXANT (reference numbers PTDC/BIA-EVF/3635/2014 and POCI-01-0145-FE/016600). This article is based on work from European Cooperation in Science and Technology (COST) action CA16107 EuroXanth, supported by COST. Camila Fernandes was supported by a fellowship (SFRH/BD/95913/2013) from FCT and a short-term scientific mission (STSM) from COST action CA16107. The EDGAR platform is funded by BMBF grant number FKZ 031A533.

We thank Leonor Cruz for lab support.

REFERENCES

13. Blom J, Kreis J, Spång S, Juhre T, Bertelli C, Ernst C, Goessmann A. 2016. EDGAR 2.0: an enhanced software platform for comparative gene con-